ERRATUM TO "PERIODIC HOMEOMORPHISMS OF 3-MANIFOLDS FIBERED OVER S¹"

RY

JEFFREY L. TOLLEFSON

Theorem 5 in [1] is not true as stated for the case p=2 and should be changed to read as shown below. Since Theorem 4 depends on this result a corresponding change is required here also.

THEOREM 4. Suppose that $M(\varphi) = F \times R^1/\varphi$, where F is a closed, orientable surface of negative Euler characteristic and $H_1(M(\varphi); Q) \cong Q$. Let $h: M(\varphi) \to M(\varphi)$ be a map such that $h^p \cong 1$ (for some prime p). In the case p = 2 and h_* is not the identity map on $H_1(M(\varphi); Q)$, assume additionally that φ^k is not homotopic to the identity map for any $k \neq 0$. Then there exists a PL homeomorphism g of $M(\varphi)$ such that $g \cong h$ and $g^p = 1$.

THEOREM 5. Let $M(\varphi) = F \times R^1/\varphi$, where F is a closed orientable surface of negative Euler characteristic. Suppose that h is a homeomorphism of $M(\varphi)$ such that $h([F \times 0]) = [F \times 0]$ and h^p is homotopic to the identity for some prime p. In the case when p = 2 and h interchanges the sides of $[F \times 0]$, assume additionally that φ^k is not homotopic to the identity for any $k \neq 0$. Then there exists a homeomorphism h' of $M(\varphi)$ such that h' is homotopic to h and $h'^p = 1$.

The proof for Theorem 5 in [1] breaks down in the case p=2 and h interchanges the sides of $[F\times 0]$, since composing h with λ_s does not effect the degree of $f\circ H|\Sigma$ as asserted. To correct the proof it is sufficient to show that the degree of $f\circ H|\Sigma$ is already zero in this case.

Thus, assume p=2 and h interchanges the sides of $[F\times 0]$. Split $M(\varphi)$ along $[F\times 0]$ to obtain $F\times [0,1]$ and a homeomorphism \hat{h} on $F\times [0,1]$ induced by h. Then there exist homotopic homeomorphisms k and k' of F such that $\hat{h}(x,0)=(k(x),1)$ and $\hat{h}(x,1)=(k'(x),0)$. We can view $h|[F\times 0]$ in two ways: $h:[x,0]\mapsto [k(x),1]=[\varphi^{-1}k(x),0]$ and $h:[x,0]=[\varphi(x),1]\mapsto [k'\varphi(x),0]$. It follows that $\varphi^{-1}k=k'\varphi\simeq k\varphi$. If we let $g=\varphi^{-1}k$ this gives h([x,0])=[g(x),0] and $g\simeq \varphi g\varphi$. Now lift the homotopy $H:h^p\simeq 1$ to a homotopy H of the covering space $p:F\times R^1\to M(\varphi)$ defined by p(x,t)=[x,t] such that $\tilde{H}_0(x,0)=(g^2(x),0)$. Then $\tilde{H}_1(x,t)=(\varphi^n(x),t+n)$ where

Received by the editors October 27, 1976.

AMS (MOS) subject classifications (1970). Primary 57A10, 57E25; Secondary 55C35.

 $n = \deg(f \circ H | \Sigma)$. It follows that $g^2 \simeq \varphi^n$ which, when combined with $g \simeq \varphi g \varphi$, yields $\varphi^{2n} \simeq 1$. Thus n = 0 as needed.

REFERENCES

1. J. Tollefson, Periodic homeomorphisms of 3-manifolds fibered over S^1 , Trans. Amer. Math. Soc. 223 (1976), 223–234.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268